主要英文论文: [1]. Qin, Q., Cheng, S., Zhang, Q., Li, L., & Shi, Y. (2016). Particle swarm optimization with interswarm interactive learning strategy. IEEE Transaction on Cybernetics, 10(4): 2238-2251. [2]. Qin, Q., Liang, F., Li, L., & Wei, Y. M. (2017). Selection of energy performance contracting business models: A behavioral decision-making approach. Renewable and Sustainable Energy Reviews, 72, 422-433. [3]. Qin, Q., Li, X., Li, L., Zhen, W., & Wei, Y. M. (2017). Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas. Applied Energy, 185, 604-614. [4]. Zhen, W., Qin, Q*., & Wei, Y. M. (2017). Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems. Energy Policy, 104, 274-284. [5]. Chen, X., Qin, Q*., & Wei, Y. M. (2016). Energy productivity and Chinese local officials’promotions: Evidence from provincial governors. Energy Policy, 95, 103-112. [6].Qin, Q., Cheng, S., Zhang, Q., Wei, Y., & Shi, Y. (2015). Multiple strategies based orthogonal design particle swarm optimizer for numerical optimization. Computers & Operations Research, 60, 91-110. [7].Qin, Q., Cheng, S., Zhang, Q., Li, L., & Shi, Y. (2015). Biomimicry of parasitic behavior in a coevolutionary particle swarm optimization algorithm for global optimization. Applied Soft Computing, 32, 224-240. [8]. Qin, Q., Cheng, S., Chu, X., Lei, X., & Shi, Y. (2017). Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization. Applied Soft Computing. 59, 229-242. [9].Qin, Q., Liu, Y., Li, X., & Li, H. (2017). A multi-criteria decision analysis model for carbon emission quota allocation in China’s east coastal areas: efficiency and equity. Journal of Cleaner Production. [10]. Qin, Q., Liang, F., Li, L., Chen, Y. W., & Yu, G. F. (2017). A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers. Applied Soft Computing,55, 93-107. [11]. Zhen, W., Qin, Q*., Kuang, Y., & Huang, N. (2017). Investigating low-carbon crop production in Guangdong Province, China (1993–2013): a decoupling and decomposition analysis. Journal of Cleaner Production. 146(10):63-70. [12]. Cheng, S., Qin, Q*., Chen, J., & Shi, Y. (2016). Brain storm optimization algorithm: a review. Artificial Intelligence Review, 1-14. [13] Li, H., & Qin, Q*. (2017). Optimal selection of different CCS technologies under CO2 reduction targets. Natural Hazards, 1-13. [1]
身份资质
中国“双法”研究会能源经济与管理分会常务理事
中国系统工程学会能源资源系统工程分会理事
研究领域:
主要从事能源经济与环境政策、管理决策与系统优化、数据驱动复杂系统建方面的研究 [1] 。
学术成果:
在SSCI/SCI发表学术论文16篇,其中第一作者或通讯作者发表JCR Q1区11余篇。
主要英文论文:
[1]. Qin, Q., Cheng, S., Zhang, Q., Li, L., & Shi, Y. (2016). Particle swarm optimization with interswarm interactive learning strategy. IEEE Transaction on Cybernetics, 10(4): 2238-2251.
[2]. Qin, Q., Liang, F., Li, L., & Wei, Y. M. (2017). Selection of energy performance contracting business models: A behavioral decision-making approach. Renewable and Sustainable Energy Reviews, 72, 422-433.
[3]. Qin, Q., Li, X., Li, L., Zhen, W., & Wei, Y. M. (2017). Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas. Applied Energy, 185, 604-614.
[4]. Zhen, W., Qin, Q*., & Wei, Y. M. (2017). Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems. Energy Policy, 104, 274-284.
[5]. Chen, X., Qin, Q*., & Wei, Y. M. (2016). Energy productivity and Chinese local officials’promotions: Evidence from provincial governors. Energy Policy, 95, 103-112.
[6].Qin, Q., Cheng, S., Zhang, Q., Wei, Y., & Shi, Y. (2015). Multiple strategies based orthogonal design particle swarm optimizer for numerical optimization. Computers & Operations Research, 60, 91-110.
[7].Qin, Q., Cheng, S., Zhang, Q., Li, L., & Shi, Y. (2015). Biomimicry of parasitic behavior in a coevolutionary particle swarm optimization algorithm for global optimization. Applied Soft Computing, 32, 224-240.
[8]. Qin, Q., Cheng, S., Chu, X., Lei, X., & Shi, Y. (2017). Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization. Applied Soft Computing. 59, 229-242.
[9].Qin, Q., Liu, Y., Li, X., & Li, H. (2017). A multi-criteria decision analysis model for carbon emission quota allocation in China’s east coastal areas: efficiency and equity. Journal of Cleaner Production.
[10]. Qin, Q., Liang, F., Li, L., Chen, Y. W., & Yu, G. F. (2017). A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers. Applied Soft Computing,55, 93-107.
[11]. Zhen, W., Qin, Q*., Kuang, Y., & Huang, N. (2017). Investigating low-carbon crop production in Guangdong Province, China (1993–2013): a decoupling and decomposition analysis. Journal of Cleaner Production. 146(10):63-70.
[12]. Cheng, S., Qin, Q*., Chen, J., & Shi, Y. (2016). Brain storm optimization algorithm: a review. Artificial Intelligence Review, 1-14.
[13] Li, H., & Qin, Q*. (2017). Optimal selection of different CCS technologies under CO2 reduction targets. Natural Hazards, 1-13. [1]
擅长课题
秦全德的视频更多>>
客户评价